Turinys:

Kaulų anatomija
Kaulų anatomija

Žmogaus kūno dalys ir kaulai www.ismaniejirobotai.lt 1-4 klasei .Dirba ir planšetėse (Gegužė 2024)

Žmogaus kūno dalys ir kaulai www.ismaniejirobotai.lt 1-4 klasei .Dirba ir planšetėse (Gegužė 2024)
Anonim

Kraujagyslių tiekimas ir cirkuliacija

Į tipišką ilgą kaulą kraujas tiekiamas trimis atskiromis sistemomis: maistine arterija, periostealinėmis kraujagyslėmis ir epifizinėmis kraujagyslėmis. Diafizę ir metafizę pirmiausia maitina maistinė arterija, kuri praeina per žievę į vidurinę ertmę ir paskui išeina į išorę per harsijos ir Volkmano kanalus, kad galėtų tiekti žievę. Plačios kraujagyslės perioste, membrana, supanti kaulą, tiekia paviršinius žievės sluoksnius ir jungiasi su maistinių-arterijų sistema. Esant maistinės arterijos obstrukcijai, perioste esantys indai gali patenkinti abiejų sistemų poreikius. Epifizės tiekiamos atskira sistema, kurią sudaro arterijų žiedas, įeinantis į kaulą išilgai apvalios juostos tarp augimo plokštelės ir sąnario kapsulės.Suaugusiam žmogui šie indai sujungiami su kitomis dviem sistemomis metafizės-epifizės sankryžoje, tačiau kol augimo plokštelė yra atvira, tokio ryšio nėra, o epifizinės kraujagyslės yra vienintelis augančios kremzlės mitybos šaltinis; todėl jie yra būtini skeleto augimui.

Kraujas nutekėja venų sistema, einanti lygiagrečiai su arteriniu aprūpinimu, ir venomis, išeinančiomis iš žievės tarpvietės per raumenis. Raumenų susitraukimas melžia kraują į išorę, sukurdamas išcentrinį srautą iš ašinės maistinės arterijos per žievę ir per raumenis.

Atstatymas, augimas ir vystymasis

Kaulų rezorbcija ir atsinaujinimas

Kai audiniai, tokie kaip raumenys, atsinaujina daugiausia molekuliniu lygmeniu, kaulas atsinaujina audinių lygiu ir yra panašus į pastatų rekonstravimą, nes vietinis senojo kaulo pašalinimas (rezorbcija) turi vykti prieš naujo kaulo nusodinimo procesą. Remontas yra intensyviausias aktyvaus augimo metais, kai nusėdimas vyrauja prieš rezorbciją. Po to žmonėms maždaug iki 35 metų amžiaus remodeliavimasis pamažu mažėja, po to jo dažnis nesikeičia arba šiek tiek padidėja. Nuo ketvirtojo dešimtmečio rezorbcija viršija susidarymą, todėl per dešimtmetį kaulų masė netenka maždaug 10 procentų, o tai prilygsta 15–30 mg kalcio praradimui per dieną.

Except for the addition of the ossification mechanisms within cartilage, growth and development involve exactly the same type of remodeling as that in the adult skeleton. Both require continuous, probably irreversible differentiation of osteoclasts and osteoblasts, the former from circulating monocytes in the blood and the latter from the undifferentiated bone mesenchyme. The life span of osteoclasts is from a few hours to at most a few days, while that of osteoblasts is a few days to at most a few weeks.

Resorption is produced by clusters of osteoclasts that either erode free bone surfaces or form “cutting cones” that tunnel through compact bone and create the cylindrical cavities that may be subsequently filled by osteons. Osteoclastic cells secrete enzymes and hydrogen ions onto the bone surface, dissolving the mineral and digesting the matrix at virtually the same moment. The process is associated with locally augmented blood flow and with a greater surface acidity than elsewhere in bone, despite the fact that the process of dissolving apatite consumes hydrogen ions. Resorption is usually a much more rapid process than formation. Osteoclastic cutting cones have been observed to advance at rates up to 500 micrometres, or microns, per day (1 micron = 1 × 10−6 metre).

Bone is formed on previously resorbed surfaces by deposition of an unmineralized protein matrix material (osteoid) and its subsequent mineralization. Osteoblasts elaborate matrix as a continuous membrane covering the surface on which they are working at a linear rate that varies with both age and species but which in large adult mammals is on the order of one micron per day. The unmineralized matrix constitutes an osteoid seam or border, averaging 6 to 10 microns in thickness during active bone formation. The biochemical and physical sequence of events that prepare matrix for mineralization includes intracellular biosynthesis of collagen by osteoblasts, extrusion of collagen extracellularly in soluble form, maturation or polymerization of collagen into an array of fibrils (in random orientation in rapidly deposited bone, in a highly ordered regular pattern in slowly formed lamellar bone), binding of calcium to collagen fibrils, and formation of protein-glycoaminoglycan complexes.

Mineralization itself depends upon establishment of crystal nuclei within the matrix; this process requires 5 to 10 days and is under the control of the osteoblast, but its exact chemistry is obscure. A suitable nucleating configuration is somehow established, and, once nuclei reach a critical size, further mineralization proceeds spontaneously in the presence of usual body fluid calcium and phosphorus concentrations. Other collagenous tissues, such as dermis, tendon, and ligament, do not normally calcify, even though bathed by the same body fluids as bone. Although extracellular fluid is a highly supersaturated solution with respect to hydroxylapatite, calcium and phosphorus will not spontaneously precipitate in this crystalline form at normal physiological pH, so one and the same fluid is indefinitely stable in non-bone-forming regions yet richly supports mineralization in the presence of suitable crystal nuclei. Mineral movement into new bone is initially rapid and in compact bone is known to reach approximately 70 percent of full mineralization within a few hours after matrix nucleation. This mineral deposition involves replacement of the water that occupied half the original matrix volume. As water content decreases, further mineral diffusion is impeded; and the final mineralization occurs progressively more slowly over a period of many weeks. In normal adult humans, new bone formation takes up about 400 mg of calcium per day, an amount approximately equal to that in the circulating blood.

Osteocytes, once thought of as resting cells, are now recognized to be metabolically active and to possess, at least in latent form, the ability to resorb and re-form bone on their lacunar walls. Although osteocytes constitute only a small fraction of total bone volume, they are so arranged within bone, and the network of their protoplasmic extensions is so extensive, that there is essentially no volume of bony material situated more than a fraction of a micron from a cell or its processes. Of the more than 1,200 square metres (1,435 square yards) of anatomic surface within the skeleton of an adult man, about 99 percent is accounted for by the lacunar and canalicular surfaces. Resorption and deposition on this surface serve both to regulate plasma calcium concentration and to renew bony material. This renewal may be particularly important because all composite materials change in their physical properties with time. It is not known whether bone properties change sufficiently to have biological consequence, but, to the extent that such change does occur, renewal around osteocytes would provide for the physical maintenance of bone structural material.